

GAZ NATUREL/BIOGAZ/GPL

Puissance de sortie continue de 1800kW-7/24 non STOP

INFORMATIONS GÉNÉRALES SUR LE GÉNÉRATEUR

Generateur	Frequence	Voltage	Facteur De Puissance	Vitesse	Moteur Die	esel		Alternat	eur		Type De	Sortie I	e Genera	teur
modèle	Hz	V	Cos Q	Rpm	marque	Serie	marque	Brand	Serie	modèle	Operation	kVA	kW	А
JNC 2250H	50	11	0.8	1500	MAN HND	CHG	canvae (AF	5	LSA LSA SOMER	53.2 XL9	Continu	2.250	1.800	3.251
JNC 2250H	60	13,8	0.8	1800			622V20	EROY OMER		54.2 UL5	Continu	2.250	1.800	3.251

- Moteurs diesel avec technologie et qualité avancées
- Alternateurs avec technologie et qualité avancées
- Faibles émissions d'échappement
- Panneau de contrôle adapté à une application flexible
- Conception compacte brevetée et enceinte insonorisée
- Coût d'exploitation réduit, adapté aux applications intensives
- Durabilité, faible niveau sonore

- Radiateur tropical 50 °C, support produit de première classe
- Filtre à carburant avec séparateur d'eau et de particules
- Faible consommation de carburant, faible consommation d'huile
- Service technique et assistance à la maintenance mondiale
- Large gamme de pièces de rechange abordables
- Technologie fiable et de haute qualité
- Une expérience d'un demi-siècle dans la fabrication de générateurs

PUISSANCE EN VEILLE - (ESP):

ESP est applicable pour fournir une alimentation d'urgence pendant la durée de la panne d'électricité du réseau. Aucune capacité de surcharge n'est disponible pour cette cote. En aucune circonstance, un moteur n'est autorisé à fonctionner en parallèle avec le réseau public à la cote de puissance en veille. Cette cote doit être utilisée là où une alimentation électrique fiable est disponible. Un moteur classé en veille doit être dimensionné pour un facteur de charge moyen maximum de 70 % et 200 heures de fonctionnement par an. Cela comprend moins de 25 heures par an à la cote de puissance en veille. Les cotes en veille ne doivent jamais être appliquées sauf en cas de véritables pannes de courant d'urgence. Les pannes de courant négociées avec une compagnie d'électricité ne sont pas considérées comme des urgences.

PUISSANCE PRINCIPALE - (PRP):

Applicable for supplying electric power in lieu of commercially purchased power. Prime Power applications must be in the form of one of the following two categories:

ALIMENTATION PRINCIPALE EN FONCTIONNEMENT ILLIMITÉ (ULTP) :

La PRP (Puissance Principale) est disponible pour un nombre illimité d'heures par an dans une application de charge variable. La charge variable ne doit pas dépasser une moyenne de 70 % de la cote de Puissance Principale pendant une période d'exploitation de 250 heures. Le temps total de fonctionnement à 100 % de la Puissance Principale ne doit pas dépasser 500 heures par an. Une capacité de surcharge de 10 % est disponible pendant une période d'une heure dans une période d'exploitation de 12 heures. Le temps total de fonctionnement à la puissance de surcharge de 10 % ne doit pas dépasser 25 heures par an.

ALIMENTATION PRINCIPALE EN FONCTIONNEMENT LIMITÉ (LTP):

La LTP (Limited Time Prime Power) est disponible pour un nombre limité d'heures dans une application sans charge variable. Elle est destinée à être utilisée dans des situations où des pannes de courant sont contractées, comme dans le cadre d'une réduction de la puissance électrique de l'utilité. Les moteurs peuvent être exploités en parallèle avec l'utilité publique jusqu'à 750 heures par an à des niveaux de puissance ne dépassant jamais la cote de Puissance Principale. Le client doit cependant être conscient que la durée de vie de tout moteur sera réduite par cette opération constante à haute charge. Tout fonctionnement

COTE DE PUISSANCE CONTINUE (COP):

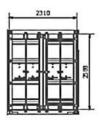
La COP est la puissance que le moteur peut continuer à utiliser sous la vitesse prescrite et les conditions d'environnement spécifiées pendant la période normale de maintenance stipulée dans l'usine de fabrication. La Puissance Continue est applicable pour fournir de l'énergie électrique à une charge constante de 100 % pendant un nombre illimité d'heures par an. Aucune capacité de surcharge n'est disponible pour cette cote.

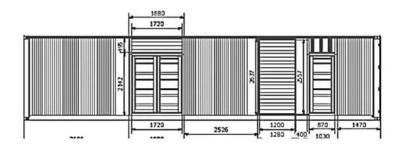
GAZ NATUREL/BIOGAZ/GPL

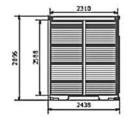
Puissance de sortie continue de 1800kW-7/24 non STOP

PORTER UNE ATTENTION PARTICULIÈRE AUX POINTS SUIVANTS LORS DU CHOIX ET DE L'UTILISATION DU GÉNÉRATEUR :

- * Les générateurs peuvent fonctionner en Puissance Continue à 70 % de la valeur de la Puissance Principale uniquement si toutes les maintenances sont effectuées à temps avec des pièces de rechange d'origine et des huiles de haute qualité recommandées par le fabricant.
- * Les générateurs ne doivent pas fonctionner en dessous de 50 % de la valeur de la Puissance Principale. Dans un tel cas, le moteur consommera excessivement d'huile et finira par subir des dommages irréparables.
- * Si vos besoins sont de 1000 kVA ou plus, vous devriez préférer des systèmes synchrones avec 2-3 générateurs, avec une sauvegarde en cas de défaillance et un vieillissement simultané.
- * Ces points vous procureront des avantages lors de l'achat et de l'exploitation du générateur.


DIMENSIONS DU GÉNÉRATEUR ET DESSINS TECHNIQUES





VALEURS		GÉNÉRATEUR DE TYPE OUVERT	GÉNÉRATEUR DE TYPE AUVENT		
LARGEUR	mm	1600	2348		
LONGUEUR	mm	6700	12031		
HAUTEUR	mm	2250	2695		
POIDS (NET)	Kg	16150	22000		

DESSINS TECHNIQUES DU GÉNÉRATEUR

GAZ NATUREL/BIOGAZ/GPL

Puissance de sortie continue de 1800kW-7/24 non STOP

A propos de MAN-HND

Le moteur à gaz HND, basé sur la technologie sous licence de la société MWM (Allemagne), a commencé à produire les moteurs diesel de la série MWM 234, notamment les types L6, V6, V8 et V12, ainsi que les moteurs diesel de la série MWM604BL6 et TBD620 de types L6, V8, V12 et V16.

En 2007, HND a obtenu la licence de fabrication des moteurs L16/24 et L21/31 de MAN B&W Co., et a commencé la production en série en 2008. Actuellement, la gamme de puissance des moteurs diesel va de 110 kW à 2336 kW.

Des composants tels que le bloc moteur, le vilebrequin, le piston, la bielle, le démarreur, et les boulons sont tous importés d'Allemagne. Les soupapes, le turbocompresseur et l'alternateur de charge sont tous importés des États-Unis.

La conception du moteur, le développement des composants et la validation complète des tests proviennent d'AVL, une célèbre société de conseil en technologie moteur dans le monde, dont le siège est en Autriche.

ÉQUIPEMENT STANDARD.

MOTEUR ET BLOC:

La fonte ductile a une résistance à la traction pouvant atteindre 120 kgf/m 2 et présente une bonne ténacité.

Le moteur du groupe électrogène et la culasse sont fabriqués en fonte ductile. Une forte capacité à supporter des charges mécaniques. La forme globulaire a moins d'effet de fissuration sur la matrice métallique. Cela permet à la fonte d'atteindre 70 à 90 % de la résistance de la structure de la matrice, avec une résistance à la traction pouvant atteindre 120 kgf/ $\rm m^2$, et elle présente une bonne ténacité.

PIÈCES MOBILES:

Acier allié 42CrMoA. Améliore la durée de vie des pièces mobiles jusqu'à 100 000 heures.

Crankshaft, camshaft (Le vilebrequin, l'arbre à cames)et d'autres pièces mobiles sont fabriqués en acier allié 42CrMoA. Il présente une limite de fatigue plus élevée et une résistance aux impacts multiples après traitement, une bonne ténacité aux chocs et une remarquable résistance à l'usure. Une forge complète sera adoptée pour conserver l'état naturel interne du métal, ce qui améliore considérablement la résistance du vilebrequin et renforce la résistance à l'usure grâce à un traitement thermique spécial. Ce vilebrequin bénéficiera d'une augmentation de plus de 20 % de sa résistance, améliorant la durée de vie des pièces mobiles jusqu'à 100 000 heures.

SOUPAPES D'ADMISSION ET D'ÉCHAPPEMENT, SIÈGES DE SOUPAPE :

MAERKISCHES WERK GMBH Fabriqué en Allemagne Le moteur à gaz HND utilise des soupapes d'admission et d'échappement d'origine importées d'Allemagne, ainsi que des sièges de soupapes (MAERKISCHES WERK GMBH). La durée de vie des soupapes d'admission et d'échappement ainsi que des sièges de soupapes des moteurs à gaz HND est bien plus longue que celle des produits similaires domestiques. La technologie brevetée de soupape d'air rotative est utilisée pour l'ajustement entre la soupape d'admission et d'échappement et leurs sièges respectifs. Les soupapes et les sièges de soupapes sont en permanence en cours de rectification pendant le fonctionnement des moteurs, assurant ainsi l'ajustement continu de la surface d'étanchéité entre les deux. Cela double la durée de vie des soupapes, tout en évitant les phénomènes de "pré-ignition" et "post-ignition" des moteurs à gaz.

SYSTÈME DE GAZ (NGL):

DUNGS - Fabriqué en Allemagne

Le système de gaz (NGL) comprend des vannes de réduction de pression, des vannes d'arrêt électromagnétiques, des vannes d'arrêt manuelles, des filtres et d'autres équipements, qui sont installés en fonction du projet spécifique. Les vannes principales du système de transmission de gaz utilisent des produits originaux allemands de la marque DUNGS. DUNGS effectue des tests de vibration sur ses commandes combinées Multiblock et Gas Bloc selon la norme militaire américaine MIL-STD-810G/31. Un support mondial est assuré par les filiales et succursales de DUNGS dans plus de 50 pays.

TURBOCOMPRESSEURS:

Le moteur à gaz HND est équipé de deux turbocompresseurs de la série TPS d'ABB, importés d'origine, afin de fournir une puissance robuste au moteur.

SYSTÈME DE SURVEILLANCE :

Woodward PG+

CONTRÔLEUR D'ALLUMAGE:

Woodward PG

SYSTÈME DE CONTRÔLE DU RAPPORT AIR-CARBURANT :

Woodward

SYSTÈME DE CONTRÔLE DES CLIQUETIS :

Woodward

GAZ NATUREL/BIOGAZ/GPL

Puissance de sortie continue de 1800kW-7/24 non STOP

JCB ENERGY MAN-HND

PUISSANCES		
Puissance électrique (en continu)	kW	2000
Puissance thermique (en continu)	kW	2363
Efficacité électrique	%	39%
Efficacité thermique	%	45%
Efficacité totale	%	83%
INFORMATIONS GÉNÉRALES SUR LE GÉNÉRATEUR		
Modèle		CHG622V20
Puissance nominale (continue)	kW	2100
Perte de chaleur	MJ/kWh	9.003
Quantité de cylindres	PCS	20
Alésage du cylindre	mm	170
Course	mm	215
Déplacement	L	97,6
Vitesse	rpm	1500
Rapport de compression		12:1
Pression moyenne effective	MPa	1,72
Vitesse moyenne du piston	m/s	10,75
Quantité d'huile	m3 (kg)	0.33(280)
Quantité d'eau de refroidissement	m3 (kg)	0.22(220)
Dimensions (L/L/H)	mm	3860×1600×2400
Poids à sec	kg	8800
Poids avec de l'huile	kg	9300
Moment d'inertie d'une section (volant)	kgm²	11,35
Sens de rotation		Counter clockwise (CCW)
Volant		SAE21
CEM (Compatibilité électromagnétique)		N(By VDE0857)
Démarreur	kW	2×13 @DC24V
FICHE DE DONNÉES SUR L'AIR DE COMBUSTION ET LES GAZ D'ÉCHAPPEMENT DU M		
Température des gaz d'échappement	°C	≤580
Température maximale des gaz d'échappement	°C	620
Débit des gaz d'échappement (y compris H2O)	kg/h	10782
Quantité de gaz d'échappement (y compris H2O)	Nm3/h	8579
Contre-pression maximale des gaz d'échappement	kPa	2,50
Diamètre de la bride d'échappement Débit d'air de combustion	mm	400
	kg/h	10387
Quantité d'air de combustion Pression d'air maximale avant le filtre à air	Nm3/h	8052
riession a air maximale avant le nitre a air	kPa	2,50

GAZ NATUREL/BIOGAZ/GPL

Puissance de sortie continue de 1800kW-7/24 non STOP

JCB ENERGY MAN-HND

FEUILLE DE DONNÉES SUR LA CONSOMMATION DE GAZ		
Puissance électrique de sortie	kW	2000
Plage de pression de gaz autorisée	kPa	≥3
Type de gaz		Natural gas
CH4	%	≥80
Pression minimale du gaz avec de l'air après le turbocompresseur	kPa	30-50
Plage autorisée de fluctuation de pression de gaz	±%	5
Fluctuation maximale de la pression de gaz	kPa/sec	1/60
Consommation de gaz	MJ/kWh	9.454
Tuyau d'admission de gaz	mm	150
PARAMÈTRES TECHNIQUES DU SYSTÈME D'HUILE DE LUBRIFICATION DU MOTEUR		
Volume du système d'huile de lubrification	Nm3	0.33
Température maximale de l'huile	°C	95
Taux de consommation d'huile	g/kWh	≤0.35
Diamètre du tuyau de remplissage d'huile de lubrification	mm	25
Diamètre du tuyau de vidange d'huile de lubrification	mm	15
PARAMÈTRES TECHNIQUES DU SYSTÈME DE REFROIDISSEMENT DU MOTEUR		
Débit d'eau du chemisage du cylindre du moteur	m3/h	100
Débit d'eau de l'intercooler	m3/h	100
Différence de température de l'eau du chemisage du cylindre (Entrée/Sortie)	°C	7-12
Différence de température de l'eau de l'intercooler (Entrée/Sortie)	°C	3-5
Température maximale de l'eau du chemisage du cylindre	°C	90
Tuyau d'entrée d'eau du chemisage du cylindre	DN/PN	DN80/PN16
Tuyau de sortie d'eau du chemisage du cylindre	DN/PN	DN65/PN16
Tuyau d'entrée/sortie d'eau de l'intercooler	DN/PN	DN65/PN16
Pression d'eau à haute température	MPa	0.3
Pression d'eau à basse température	MPa	0.20
DONNÉES DE CALCUL POUR LE RADIATEUR À DISTANCE ET LA POMPE À EAU		
Dissipation de chaleur de la partie à haute température	kw	1266
Dissipation de chaleur de la partie à basse température	kw	341
Température ambiante	°C	40
Eau à haute température	°C	78 to 69.5
Eau à basse température Entrée/Sortie	°C	42 to 45.7
Débit de la pompe à haute température	m3/h	100
Débit de la pompe à basse température	m3/h	100

GAZ NATUREL/BIOGAZ/GPL

Puissance de sortie continue de 1800kW-7/24 non STOP

JCB ENERGY MAN-HND

Données d'erris	cion du	noto														
NOx (5%O2)	sion au n	noteur							mg/Nm	.2			≤500			
									_				≤1006			
CO (5%O2)									mg/Nm				≤132.7			
HC (5%O2)									mg/Nm	13			8			
02									%							
taux d'excès d'ai		CAZ DOLL	DIECN	OTTURE					λ				1,50			
	ALITE DO C	JAZ PUU	K LES IVI	IUTEURS												
CH4 (Méthane)									≥				80%			
Taux de variation d	le concent	tration							≤				2%/30s			
Pression du gaz									≥				5kPa			
Plage de masse du	_								≤				2%/min			
H2S (Sulfure d'hydi	rogène)								≤				20mg/N	m3		
Tout le soufre									≤				20mg/N	m3		
Particules solides									≤				5μm and	d 30mg	g/m3	
LISTE DE BILAN THE	RMIQUE	D'ENSEN	IBLE DE	GÉNÉRA	TEUR											
Énergie du gaz						kW			2947	3	3423	4175	4406		4837	5252
Puissance électriqu	ie					kW			1000	2	1200	1500	1600		1800	2000
Efficacité électrique	е					%			33.93%	. 3	35.06%	35.93%	36.31%		37.21%	38.08%
Thermal d'eau du c	hemisage	du cylin	dre			kW			734	8	346	1022	1071		1171	1266
Efficacité thermiqu	e de la lig	ne de flo	ttaison		%			24.90%	. 2	24.73%	24.47%	24.30%		24.20%	24.10%	
Thermal des gaz d'	échappem	nent				kW			534	(645	817	869		996	1097
Efficacité thermiqu	e des gaz	d'échap	pement			/			18.11%		18.85%	19.56%	19.72%		20.58%	20.89%
Efficacité thermiqu	e					/			43.01%	. 4	13.58%	44.03%	44.02%		44.78%	44.99%
Efficacité totale						/			76.94%		78.64%	76.96%	80.33%		81.99%	83.07%
PARAMÈTRES DE	CALCUL	DES VIE	BRATIO	NS TOR	SIONNE	ELLES										
Puissance		Vitesse	e de rot	tation	Lo	ongueu	r de la	bielle	Ma	ain Jo	urnal	Journal Cra	nk pin	Rés	istance à la vilebre	traction du
1080 kW		15	500 rpn	n	360	0 mm			170 m	nm		130 mm		55 M	IPa	·
Diamètre du cylindre (d)	de	ngueur la urse (s)	de	ngueur la urse	Eff	Efficacité de couple					Rapport de bi manivelle (λ)	elle de	_	e d'arrange dres (v)	ment des	
170 mm		5 mm	4		0,8	39			15.24			0.2986		90°		
Ordre d'allumage	2				А	1-B7-A	2-B5-A	4-B3-A	6-B1-A8-	B2-A	10-B4-A9-	B6-A7-B8-A5-B	10-A3-B9			
Rigidité torsionnelle	C1	C2	C3	C4	C5	C6	C 7	C8	С9	C10	C11	1000 1000 1000 1000 1000 1000 1000 100	1.47TS	1.4775	1.477	101 0
MNm/rad	10,42	8,18	8,18	8,18	8,18	8,18	8,18	8,18	8,18	8,1	8 12,66	Shock absorber			06 CT CS C	9 (10 (11

GAZ NATUREL/BIOGAZ/GPL

Puissance de sortie continue de 1800kW-7/24 non STOP

ALERTE DU MODULE DE CONTRÔLE

Dysfonctionnement d'Arrêt d'Urgence
Fréquence Élevée du Générateur
Basse Fréquence du Générateur, Basse Charge
Surintensité, Courant Déséquilibré
Basse Tension du Générateur
Fréquence Élevée du Générateur
Erreur de Séquence de Phase
Surcharge, Capteur de Chaleur Défectueux
Niveau d'Eau Bas (Optionnel)
Basse Pression d'Huile, Inversion de Puissance

Erreur de démarrage, erreur d'arrêt
Erreur de capteur magnétique
Erreur de l'alternateur de charge
Charge déséquilibrée
Alarme de temps de maintenance
Basse vitesse, haute vitesse
Câble de capteur d'huile rompu
Haute température d'huile (en option)
Niveau de carburant bas (en option), tension de batterie élevée
Tension de batterie basse, température de l'eau élevée
Erreurs du bus Can électronique (ECU)

SPÉCIFICATIONS DU PANNEAU DE CONTRÔLE

Basse Température de l'Eau

- Panneau en acier peint par poudrage avec porte verrouillable
- ATS (Panneau de transfert automatique) En option
- Module de contrôle
- Chargeur de batterie
- Bouton d'arrêt d'urgence

- Borniers de raccordement
- o Terminal de sortie de charge
- MSBs (Système de protection du matériel)
- Disjoncteur En option
- Écran LCI
- o Relais de contrôle
- o Rétroéclairé, 128x64 pixels

PARAMÈTRES TECHNIQUES DU MODULE DE CONTRÔLE

Marque	JCB ENERGY/Fortrust JV	Modele	6120 D Version
Dimensions	221mmx152mmx56.8mm	Protection Class	IP65 From the Front
Poids	800 gr.	Conditions environnementales	2000 meters above sea level
Humidité ambiante	Max. %90.	Température ambiante	-20°C to +70°C
Tension d'alimentation de la batterie en courant continu	8 - 32 V	Mesure de la tension de la batterie	8 – 32 V
Fréquence du réseau	5 - 99,9 Hz	Mesure de la tension secteur	3 - 300 V phase -Neutral, 5 - 99,9 Hz
Mesure de la tension du générateur	3 - 300 V	Fréquence du générateur	5 - 99,9 Hz
Transformateur de courant secondaire	5A	Période de fonctionnement	Continuous
Mesure de la tension de l'alternateur de charge	8 - 32 V	Excitation de l'alternateur de charge	210mA &12V, 105mA &24V Nominal 2.5W
Interface de communication	RS-232	Mesure de capteur analogique	0 - 1300ohm
Sortie de relais de contacteur de générateur	5A & 250V	Sortie relais contacteur secteur	5A & 250V
Sorties de transistor de solénoïde	1A with DC Supply	Sorties transistor de démarrage	1A with DC Supply
Sorties de transistor configurables-3	1A with DC Supply	Configurable-4 Sorties transistor	1A with DC Supply

GAZ NATUREL/BIOGAZ/GPL

Puissance de sortie continue de 1800kW-7/24 non STOP

FONCTIONS DU MODULE DE CONTRÔLE

Contrôle du Niveau de Tension du Réseau	Contrôle du Niveau de Tension du Générateur	Protections du Générateur Triphasé	Fonction AMF Triphasée (Automatique Mains Failure)	Sirène d'Alarme
Contrôle du Niveau de Fréquence du Réseau	Contrôle du Niveau de Fréquence du Générateur	- Haute/Basse Tension	Haute/Basse Fréquence	Contrôle du Thermostat du Tube Chauffant
Contrôle des Options de Fonctionnement du Moteur	Contrôle du Niveau de Courant du Générateur	- Haute/Basse Fréquence	Haute/Basse Tension	Modbus et SNMP (Simple Network Management Protocol)
Contrôle des Options d'Arrêt du Moteur	Contrôle du Niveau de Poudre du Générateur	-Asymétrie Courant/Tension	Haute/Basse Température de l'Eau	Heures de Fonctionnement
Contrôle du Niveau de Vitesse du Moteur (RPM)	Programmation et Contrôle de l'Horaire de Travail du Générateur	Surintensité/Surcharge	Haute/Basse Charge	Fuite à la Terre
Options de Tension de la Batterie (en temps)	Contrôle des Pressions d'Huile	Contrôle de la Surchauffe	Contrôle ATS (Automatic Transfer Switch) du Réseau et du Générateur	Modem Analogique
Vérifier les Temps d'Entretien du Moteur	Entrées et Sorties Analogiques Configurables	Sélection de Phase 1 ou 3 Phases	Affichage du Réseau, de la Tension, et de la Fréquence	Ethernet, USB, RS232, RS485
Interfaces de Communication GPRS, GSM	Enregistrement des Erreurs des Événements Passés	Réglage des Paramètres via le Module de Contrôle	Réglage des Paramètres via l'Ordinateur	Alarme/Arrêt de Protection Sélectionnable
Vitesse du Moteur, Tension, Gains	Entrées et Sorties Numériques Configurables et Programmables	Température de l'Eau Courant et Fréquence	Heures de Fonctionnement Séquence de Phase	Tension de la Batterie Pression d'Huile

SPÉCIFICATIONS DU CAPOT INSONORISÉ ET DU CHÂSSIS

- Conception et Couleur Spéciales, Enregistrées JCB Energy
- Acier de Qualité A1 DKP / HRU / Galvanisé
- Presse Plieuse Automatique à Commande Sensible
- Découpe Délicate sur Poinçonneuse Automatique et Banc Laser
- Soudure Sensible sur Banc de Soudage Robotisé
- Nettoyage Chimique avec Technologie Nano Avant la Peinture
- o Peinture Robotisée avec Peinture en Poudre Électrostatique
- o Séchage et Stabilisation dans des Fours à 200 ºC
- Test au Sel de 1500 Heures
- o Isolation en Laine de Verre, Matériau de Classe A1 -50/+500 ºC
- Revêtement Spécial sur la Laine de Verre
- Meilleur Niveau Sonore (en Dba)
- o Tests de Température
- Accessoires Antirouille

- Connecteurs et Glands de Sortie de Câble
- Bouton d'Arrêt d'Urgence
- Jauge de Niveau de Carburant
- Bouchon de Vidange de Carburant
- Enregistrements d'Entrée et de Retour de Carburant
- o Test de Perméabilité pour le Réservoir de Carburant
- Montage en Caoutchouc sous Vide
- Joints d'Étanchéité de Haute Qualité
- Amortisseurs de Choc de Haute Qualité
- Bouchon de Remplissage de Carburant (avec ventilation)
- Équipement de Levage et de Transport
- Silencieux d'Échappement Internes (Silencieux)
- Silencieux d'Échappement Externes (Silencieux)
- Bouchon de Remplissage d'Eau de Radiateur
- Réservoir de Carburant Quotidien, Réservoir de Carburant Externe

GAZ NATUREL/BIOGAZ/GPL

Puissance de sortie continue de 1800kW-7/24 non STOP

PRODUITS SPÉCIAUX / NON NORMALISÉS

Systèmes synchronisés	Générateurs - avec remorque	Générateurs en courant continu
Systèmes SCADA	Générateurs moyenne tension - MV	Haute tension - HV
Systèmes mobiles	Générateurs de classe IP44-IP54	Centrales électriques
Tours d'éclairage	Machines de soudage	Systèmes de trigénération
Groupes électrogènes pour unités de puissance au sol	Générateur à gaz naturel	Générateur de biogaz
Groupes électrogènes haute fréquence	Générateurs marins	Canopée super silencieuse
Groupes électrogènes à vitesse variable	Générateurs doubles	Stabilisateurs de tension automatiques
Systèmes de cogénération	Générateur au GPL (gaz de pétrole liquéfié)	Chariot élévateur électrique et diesel
HFO Generateur		

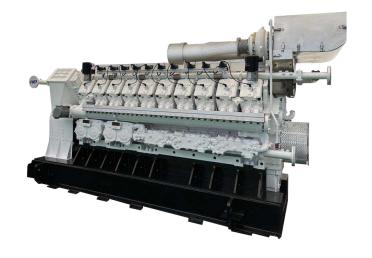
CHG622V16

Puissance électrique : 2000kW

Production thermique: 2363kW

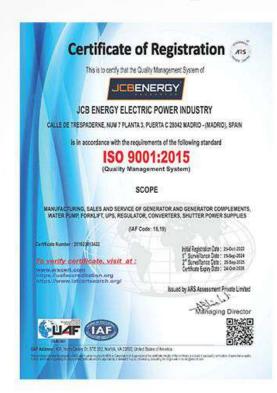
Efficacité électrique : >38.08 %

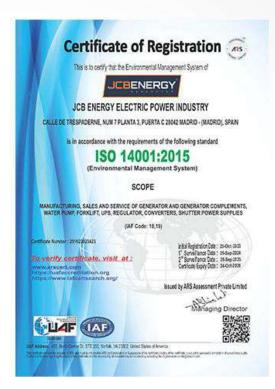
Efficacité thermique : > 44.99 %


Efficacité totale : > 83.07 %

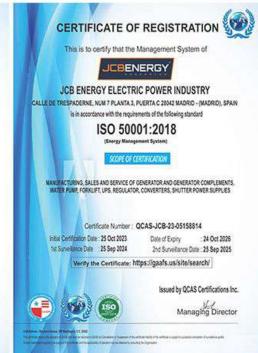
Consommation de gaz : 527 (Hu = 35.88MJ/m3)

Taux de consommation d'huile : ≤0.35 g/kWh


Première révision / Entretien : 64000H/500H


NOx (5%O2) : ≤500 mg/Nm3

RECOMMENDATION D'HUILE	DETAIL DU GAZ				
HDAX 5100 Huile pour moteur à gaz sans cendres - SAE 40	GAZ NATUREL	= METHANE (MARSH)			
HDAX 5200 Huile pour moteur à gaz faible en cendres - SAE 40	BIOGAZ	= %50 METHANE (MARSH)			
HDAX 7200 Huile pour moteur à gaz faible en cendres - SAE 40	LPG	= PROPANE+BUTANE			


Nos Certificats De Qualité

